

QUICKSWITCH® PRODUCTS HIGH-SPEED CMOS 24-BIT BUS SWITCH

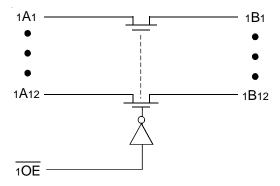
IDTQS316211

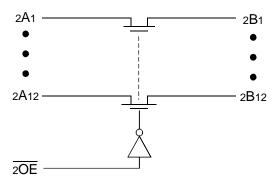
FEATURES:

- Enhanced N channel FET with no inherent diode to Vcc
- 5Ω bidirectional switches connect inputs to outputs
- · Zero propagation delay, zero ground bounce
- · TTL-compatible input and output levels
- · Undershoot clamp diodes on all switch and control inputs
- · Available in SSOP and TSSOP packages

APPLICATIONS:

- · Hot-swapping, hot-docking
- · Voltage translation (5V to 3.3V)
- · Logic replacement (data processing)
- Power conservation
- · Capacitance reduction and isolation
- · Bus isolation
- Clock gating

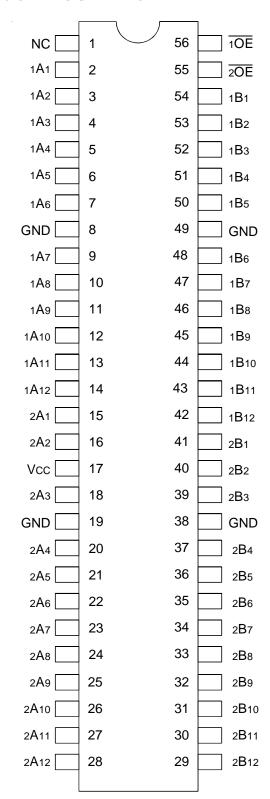

DESCRIPTION:


The QS316211 provides a set of 24 high-speed CMOS TTL-compatible bus switches. The low ON resistance of the QS316211 allows inputs to be connected to outputs without adding propagation delay and without generating additional ground bounce noise. The device operates as a 24-bit bus switch. When $\overline{10E}$ is low, 1An is connected to 1Bn. When $\overline{20E}$ is low, 2An is connected to 2Bn.

The QS316211 is ideal for switching wide digital buses, 5V to 3.3V translation, and for hot plug buffering.

The QS316211 is characterized for operation at -40°C to +85°C.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

NOVEMBER 1999

PIN CONFIGURATION

SSOP/ TSSOP

TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Supply Voltage to Ground	-0.5 to +7	٧
VTERM ⁽³⁾	DC Switch Voltage Vs	-0.5 to +7	٧
VTERM ⁽³⁾	DC Input Voltage VIN	-0.5 to +7	٧
VAC	AC Input Voltage (pulse width ≤20ns)	-3	V
lout	DC Output Current	120	mA
Рмах	Maximum Power Dissipation (T _A = 85°C)	0.93	W
Tstg	Storage Temperature	-65 to +150	°C

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc .

CAPACITANCE (TA = +25°C, f = 1MHz, VIN = 0V, VOUT = 0V)

Pins	Тур.	Max. ⁽¹⁾	Unit
Control Inputs	4.5	6	pF
Quickswitch Channels (Switch OFF)	5.5	7	pF

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	I/O	Description		
xA1 - xA12	I/O	Bus A		
xB1 - xB12	I/O	Bus B		
10E - 20E	I	Data Select		

FUNCTION TABLE(1)

10E	20E	хA	хҮ	Function	
L	L	1Вх	2Bx	1Ax to 1Bx, 2Ax to 2Bx	
L	Н	1Вх	Z	1Ax to 1Bx	
Н	L	Z	2Bx	2Ax to 2Bx	
Н	Н	Z	Z	Disconnect	

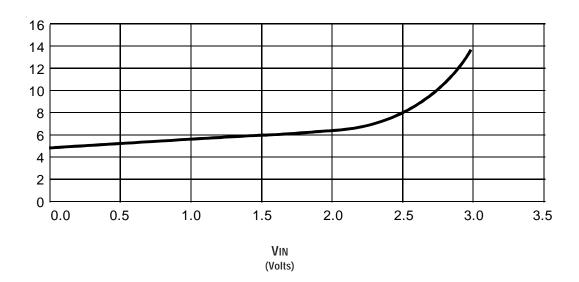
NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: TA = -40°C to +85°C, VCC = $5V \pm 10\%$


Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Inputs	2	_	_	V
VIL	Input LOW Voltage	Guaranteed Logic LOW for Control Inputs	_	_	0.8	V
lin	Input Leakage Current (Control Inputs)	$OV \leq VIN \leq VCC$	_	0.01	±1	μΑ
loz	Off-State Current (Hi-Z)	OV ≤ Vout ≤ Vcc, Switches OFF	_	0.01	±1	μA
Ron	Switch ON Resistance ⁽²⁾	Vcc = Min., VIN = 0V, ION = 30mA	_	5	7	Ω
		VCC = Min., VIN = 2.4V, ION = 15mA	_	10	12	
VP	Pass Voltage ⁽³⁾	$VIN = VCC = 5V$, $IOUT = -5\mu A$	3.7	4	4.2	V

NOTES:

- 1. Typical values are at Vcc = 5V and TA = 25°C.
- 2. Ron is guaranteed but not production tested.
- 3. Pass voltage is guaranteed but not production tested.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 5V

POWER SUPPLY CHARACTERISTICS

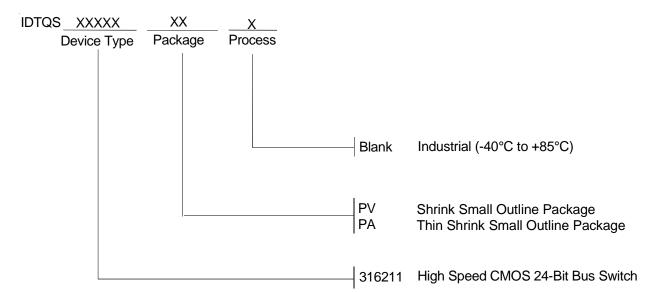
Symbol	Parameter	Test Conditions ⁽¹⁾	Max.	Unit
Icco	Quiescent Power Supply Current	Vcc = Max., Vin = GND or Vcc, f = 0	3	μA
Δlcc	Power Supply Current per Control Input HIGH ⁽²⁾	Vcc = Max., Vin = 3.4V, f = 0	2.5	mA
ICCD	Dynamic Power Supply Current per MHz (3)	Vcc = Max., A and B Pins Open, Control Inputs Toggling @ 50% Duty Cycle	0.25	mA/MHz

NOTES:

- 1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
- 2. Per TTL-driven input (VIN = 3.4V). A and B pins do not contribute to Δlcc.
- 3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 $T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 5V \pm 10\%$


CLOAD = 50pF, RLOAD = 500Ω unless otherwise noted.

Symbol	Parameter	Min. ⁽¹⁾	Тур.	Max.	Unit
tplH	Data Propagation Delay ⁽²⁾	_	_	0.25 ⁽³⁾	ns
t _{PHL}	xAx to xBx, xBx to xAx				
tpzl	Switch Turn-On Delay	1.5	_	6.5	ns
tpzh	\overline{xOE} to xAx, xBx				
tplz	Switch Turn-Off Delay ⁽²⁾	1.5	_	6.2	ns
tphz	\overline{xOE} to xAx, xBx				

NOTES:

- 1. Minimums are guaranteed but not production tested.
- 2. This parameter is guaranteed but not production tested.
- 3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns at C_L = 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674

fax: 408-492-8674 www.idt.com for Tech Support: logichelp@idt.com (408) 654-6459